

7 Virtual Machine I: Stack Arithmetic

Programmers are creators of universes for which they alone are responsible. Universes of virtu-

ally unlimited complexity can be created in the form of computer programs.

—Joseph Weizenbaum, Computer Power and Human Reason (1974)

This chapter describes the first steps toward building a compiler for a typical object-

based high-level language. We will approach this substantial task in two stages, each

spanning two chapters. High-level programs will first be translated into an interme-

diate code (chapters 10–11), and the intermediate code will then be translated into

machine language (chapters 7–8). This two-tier translation model is a rather old idea

that goes back to the 1970s. Recently, it made a significant comeback following its

adoption by modern languages like Java and C#.

The basic idea is as follows: Instead of running on a real platform, the intermedi-

ate code is designed to run on a Virtual Machine. The VM is an abstract computer

that does not exist for real, but can rather be realized on other computer platforms.

There are many reasons why this idea makes sense, one of which being code trans-

portability. Since the VM may be implemented with relative ease on multiple target

platforms, VM-based software can run on many processors and operating systems

without having to modify the original source code. The VM implementations can be

realized in several ways, by software interpreters, by special-purpose hardware, or by

translating the VM programs into the machine language of the target platform.

This chapter presents a typical VM architecture, modeled after the Java Virtual

Machine (JVM) paradigm. As usual, we focus on two perspectives. First, we moti-

vate and specify the VM abstraction. Next, we implement it over the Hack platform.

Our implementation entails writing a program called VM translator, designed to

translate VM code into Hack assembly code. The software suite that comes with the

book illustrates yet another implementation vehicle, called VM emulator. This pro-

gram implements the VM by emulating it on a standard personal computer using

Java.

A virtual machine model typically has a language, in which one can write VM

programs. The VM language that we present here consists of four types of com-

mands: arithmetic, memory access, program flow, and subroutine calling commands.

We split the implementation of this language into two parts, each covered in a sepa-

rate chapter and project. In this chapter we build a basic VM translator, capable

of translating the VM’s arithmetic and memory access commands into machine lan-

guage. In the next chapter we extend the basic translator with program flow and

subroutine calling functionality. The result is a full-scale virtual machine that will

serve as the backend of the compiler that we will build in chapters 10–11.

The virtual machine that emerges from this effort illustrates many important ideas

in computer science. First, the notion of having one computer emulating another is

a fundamental idea in the field, tracing back to Alan Turing in the 1930s. Over the

years it had many practical implications, for example, using an emulator of an old

generation computer running on a new platform in order to achieve upward code

compatibility. More recently, the virtual machine model became the centerpiece

of two competing mainstreams—the Java architecture and the .NET infrastructure.

These software environments are rather complex, and one way to gain an inside view

of their underlying structure is to build a simple version of their VM cores, as we do

here.

Another important topic embedded in this chapter is stack processing. The stack

is a fundamental and elegant data structure that comes to play in many computer

systems and algorithms. Since the VM presented in this chapter is stack-based, it

provides a working example of this remarkably versatile data structure.

7.1 Background

7.1.1 The Virtual Machine Paradigm

Before a high-level program can run on a target computer, it must be translated into

the computer’s machine language. This translation—known as compilation—is a

rather complex process. Normally, a separate compiler is written specifically for any

given pair of high-level language and target machine language. This leads to a pro-

liferation of many different compilers, each depending on every detail of both its

source and destination languages. One way to decouple this dependency is to break

the overall compilation process into two nearly separate stages. In the first stage,

the high-level program is parsed and its commands are translated into intermediate

122 Chapter 7

processing steps—steps that are neither ‘‘high’’ nor ‘‘low.’’ In the second stage, the

intermediate steps are translated further into the machine language of the target

hardware.

This decomposition is very appealing from a software engineering perspective: The

first stage depends only on the specifics of the source high-level language, and the

second stage only on the specifics of the target machine language. Of course, the in-

terface between the two compilation stages—the exact definition of the intermediate

processing steps—must be carefully designed. In fact, this interface is sufficiently im-

portant to merit its own definition as a stand-alone language of an abstract machine.

Specifically, one can formulate a virtual machine whose instructions are the interme-

diate processing steps into which high-level commands are decomposed. The com-

piler that was formerly a single monolithic program is now split into two separate

programs. The first program, still termed compiler, translates the high-level code into

intermediate VM instructions, while the second program translates this VM code

into the machine language of the target platform.

This two-stage compilation model has been used—one way or another—in many

compiler construction projects. Some developers went as far as defining a formal and

stand-alone virtual machine language, most notably the p-code generated by several

Pascal compilers in the 1970s. Java compilers are also two-tiered, generating a byte-

code language that runs on the JVM virtual machine (also called the Java Runtime

Environment). More recently, the approach has been adopted by the .NET infra-

structure. In particular, .NET requires compilers to generate code written in an

intermediate language (IL) that runs on a virtual machine called CLR (Common

Language Runtime).

Indeed, the notion of an explicit and formal virtual machine language has several

practical advantages. First, compilers for different target platforms can be obtained

with relative ease by replacing only the virtual machine implementation (sometimes

called the compiler’s backend). This, in turn, allows the VM code to become trans-

portable across different hardware platforms, permitting a range of implementation

trade-offs among code efficiency, hardware cost, and programming effort. Second,

compilers for many languages can share the same VM backend, allowing code

sharing and language interoperability. For example, one high-level language may be

good at scientific calculations, while another may excel in handling the user interface.

If both languages compile into a common VM layer, it is rather natural to have

routines in one language call routines in the other, using an agreed-upon invocation

syntax.

Another benefit of the virtual machine approach is modularity. Every improve-

ment in the efficiency of the VM implementation is immediately inherited by all the

123 Virtual Machine I: Stack Arithmetic

compilers above it. Likewise, every new digital device or appliance that is equipped

with a VM implementation can immediately benefit from a huge base of available

software, as seen in figure 7.1.

7.1.2 The Stack Machine Model

Like most programming languages, the VM language consists of arithmetic, memory

access, program flow, and subroutine calling operations. There are several possible

software paradigms on which to base such a language implementation. One of the

key questions regarding this choice is where will the operands and the results of the

VM operations reside? Perhaps the cleanest solution is to put them on a stack data

structure.

In a stack machine model, arithmetic commands pop their operands from the

top of the stack and push their results back onto the top of the stack. Other com-

mands transfer data items from the stack’s top to designated memory locations, and

vice versa. As it turns out, these simple stack operations can be used to implement

the evaluation of any arithmetic or logical expression. Further, any program, written

in any programming language, can be translated into an equivalent stack machine

program. One such stack machine model is used in the Java Virtual Machine as well

as in the VM described and built in what follows.

Elementary Stack Operations A stack is an abstract data structure that supports

two basic operations: push and pop. The push operation adds an element to the top

of the stack; the element that was previously on top is pushed below the newly added

element. The pop operation retrieves and removes the top element; the element just

below it moves up to the top position. Thus the stack implements a last-in-first-out

(LIFO) storage model, illustrated in figure 7.2.

We see that stack access differs from conventional memory access in several

respects. First, the stack is accessible only from the top, one item at a time. Second,

reading the stack is a lossy operation: The only way to retrieve the top value is

to remove it from the stack. In contrast, the act of reading a value from a regular

memory location has no impact on the memory’s state. Finally, writing an item onto

the stack adds it to the stack’s top, without changing the rest of the stack. In con-

trast, writing an item into a regular memory location is a lossy operation, since it

overrides the location’s previous value.

The stack data structure can be implemented in several different ways. The sim-

plest approach is to keep an array, say stack, and a stack pointer variable, say sp,

that points to the available location just above the topmost element. The push x

124 Chapter 7

. . .
RISC

machine

VM language

Other digital platforms, each equipped
with its VM implementation

RISC
machine
language

Hack
computer

Hack
machine
language

CISC
machine
language

CISC
machine

. . .

Chapters
10–11

Written in
a high-level
language

Any
computer

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

VM imp.
over the Hack

platform
VM

emulator

Some other
language

Jack
language

Some
compiler Some other

compiler
Jack

compiler

. . .

ChapterChapters
7–8

Some
language

. . .

Chapters
1–6

Ch. 9: application

Ch. 12: operating system

Figure 7.1 The virtual machine paradigm. Once a high-level program is compiled into VM
code, the program can run on any hardware platform equipped with a suitable VM imple-
mentation. In this chapter we start building the VM implementation on the Hack platform and
use a VM emulator like the one depicted on the right.

125 Virtual Machine I: Stack Arithmetic

command is then implemented by storing x at the array entry pointed by sp and then

incrementing sp (i.e., stack[sp]=x; sp=sp+1). The pop operation is implemented

by first decrementing sp and then returning the value stored in the top position (i.e.,

sp=sp-1; return stack[sp]).

As usual in computer science, simplicity and elegance imply power of expres-

sion. The simple stack model is a versatile data structure that comes to play in many

computer systems and algorithms. In the virtual machine architecture that we build

here, it serves two key purposes. First, it is used for handling all the arithmetic and

logical operations of the VM. Second, it facilitates subroutine calls and the asso-

ciated memory allocation—the subjects of the next chapter.

Stack Arithmetic Stack-based arithmetic is a simple matter: the operands are

popped from the stack, the required operation is performed on them, and the result

is pushed back onto the stack. For example, here is how addition is handled:

a

b

pop a

SP

121
5

17 push b

6

108
...

SP

121
5

17
108

SP

121
5

Stack Memory
...

...

a

b

17

108
...

...

...

a

b

6

108
...

Memory
...

...

Stack

a

bSP

121
5

17

6

108
...

Stack Memory
...

...

Stack Memory

(before) (after)

Figure 7.2 Stack processing example, illustrating the two elementary operations push and
pop. Following convention, the stack is drawn upside down, as if it grows downward. The
location just after the top position is always referred to by a special pointer called sp, or stack
pointer. The labels a and b refer to two arbitrary memory addresses.

126 Chapter 7

SP

17
9

17
4
5

SP

add

The stack version of other operations (subtract, multiply, etc.) are precisely the

same. For example, consider the expression d=(2–x)*(y+5), taken from some high-

level program. The stack-based evaluation of this expression is shown in figure 7.3.

Stack-based evaluation of Boolean expressions has precisely the same flavor. For

example, consider the high-level command if (x<7) or (y=8) then. . . . The stack-

based evaluation of this expression is shown in figure 7.4.

The previous examples illustrate a general observation: any arithmetic and Boo-

lean expression—no matter how complex—can be systematically converted into,

and evaluated by, a sequence of simple operations on a stack. Thus, one can write a

compiler that translates high-level arithmetic and Boolean expressions into sequences

of stack commands, as we will do in chapters 10–11. We now turn to specify these

commands (section 7.2), and describe their implementation on the Hack platform

(section 7.3).

7.2 VM Specification, Part I

7.2.1 General

The virtual machine is stack-based: all operations are done on a stack. It is also

function-based: a complete VM program is organized in program units called func-

tions, written in the VM language. Each function has its own stand-alone code and

is separately handled. The VM language has a single 16-bit data type that can be

used as an integer, a Boolean, or a pointer. The language consists of four types of

commands:

m Arithmetic commands perform arithmetic and logical operations on the stack.

m Memory access commands transfer data between the stack and virtual memory

segments.

m Program flow commands facilitate conditional and unconditional branching

operations.

m Function calling commands call functions and return from them.

127 Virtual Machine I: Stack Arithmetic

// d=(2-x)*(y+5)

push 2

push x

sub

push y

push 5

add

mult

pop d

y

SP

SP

2
5

–3
9
5

x 5

...

...

9
SP

2

SP

–3

SP

–3
9

SP

SP

–3
14 SP

–42

y
x 5

...

...

9

d
...
–42

SP

Memory

Memory

push x subpush 2

push y push 5 add

mult pop d

Stack

Stack

Figure 7.3 Stack-based evaluation of arithmetic expressions. This example evaluates the
expression d ¼ ð2� xÞ � ðyþ 5Þ, assuming the initial memory state x ¼ 5, y ¼ 9.

128 Chapter 7

Building a virtual machine is a complex undertaking, and so we divide it into two

stages. In this chapter we specify the arithmetic and memory access commands and

build a basic VM translator that implements them only. The next chapter specifies

the program flow and function calling commands and extends the basic translator

into a full-scale virtual machine implementation.

Program and Command Structure A VM program is a collection of one or more

files with a .vm extension, each consisting of one or more functions. From a compi-

lation standpoint, these constructs correspond, respectively, to the notions of pro-

gram, class, and method in an object-oriented language.

// if (x<7) or (y=8)

push x

push 7

lt

push y

push 8

eq

or

y

SP

SP

SP

SP

SP

SP

SP

SP

12
7

8
8

x 12

...

...

8

12

8

Memory

push x push 7

push y push 8

or

it

eq
false false false

false
true

true

Stack

Figure 7.4 Stack-based evaluation of logical expressions. This example evaluates the Boolean
expression ðx < 7Þ or ðy ¼ 8Þ, assuming the initial memory state x ¼ 12, y ¼ 8.

129 Virtual Machine I: Stack Arithmetic

Within a .vm file, each VM command appears in a separate line, and in one of the

following formats: command (e.g., add), command arg (e.g., goto loop), or command

arg1 arg2 (e.g., push local 3). The arguments are separated from each other and

from the command part by an arbitrary number of spaces. ‘‘//’’ comments can ap-

pear at the end of any line and are ignored. Blank lines are permitted and ignored.

7.2.2 Arithmetic and Logical Commands

The VM language features nine stack-oriented arithmetic and logical commands.

Seven of these commands are binary: They pop two items off the stack, compute a

binary function on them, and push the result back onto the stack. The remaining two

commands are unary: they pop a single item off the stack, compute a unary function

on it, and push the result back onto the stack. We see that each command has the net

impact of replacing its operand(s) with the command’s result, without affecting the

rest of the stack. Figure 7.5 gives the details.

Three of the commands listed in figure 7.5 (eq, gt, lt) return Boolean values.

The VM represents true and false as �1 (minus one, 0xFFFF) and 0 (zero, 0x0000),

respectively.

7.2.3 Memory Access Commands

So far in the chapter, memory access commands were illustrated using the pseudo-

commands pop and push x, where the symbol x referred to an individual location

Command

Return value (after

popping the operand/s) Comment

add xþ y Integer addition (2’s complement)

sub x� y Integer subtraction (2’s complement)

neg �y Arithmetic negation (2’s complement)

eq true if x ¼ y, else false Equality

gt true if x > y, else false Greater than

SP

...
x
y

Stack

lt true if x < y, else false Less than

and x And y Bit-wise

or x Or y Bit-wise

not Not y Bit-wise

Figure 7.5 Arithmetic and logical stack commands.

130 Chapter 7

in some global memory. Yet formally, our VM manipulates eight separate virtual

memory segments, listed in figure 7.6.

Memory Access Commands All the memory segments are accessed by the same two

commands:

m push segment index Push the value of segment[index] onto the stack.

m pop segment index Pop the top stack value and store it in segment[index].

Segment Purpose Comments

argument Stores the function’s

arguments.

Allocated dynamically by the VM

implementation when the function

is entered.

local Stores the function’s local

variables.

Allocated dynamically by the VM

implementation and initialized to

0’s when the function is entered.

static Stores static variables

shared by all functions in

the same .vm file.

Allocated by the VM imp.

for each .vm file; shared by all

functions in the .vm file.

constant Pseudo-segment that holds

all the constants in the

range 0 . . . 32767.

Emulated by the VM

implementation; Seen by all the

functions in the program.

this

that

General-purpose segments.

Can be made to correspond

to different areas in the

heap. Serve various

programming needs.

Any VM function can use these

segments to manipulate selected

areas on the heap.

pointer A two-entry segment that

holds the base addresses of

the this and that

segments.

Any VM function can set pointer

0 (or 1) to some address; this has

the effect of aligning the this (or

that) segment to the heap area

beginning in that address.

temp Fixed eight-entry segment

that holds temporary

variables for general use.

May be used by any VM function

for any purpose. Shared by all

functions in the program.

Figure 7.6 The memory segments seen by every VM function.

131 Virtual Machine I: Stack Arithmetic

Where segment is one of the eight segment names and index is a non-negative in-

teger. For example, push argument 2 followed by pop local 1 will store the value

of the function’s third argument in the function’s second local variable (each seg-

ment’s index starts at 0).

The relationship among VM files, VM functions, and their respective virtual

memory segments is depicted in figure 7.7.

In addition to the eight memory segments, which are managed explicitly by

VM push and pop commands, the VM implementation manages two implicit

data structures called stack and heap. These data structures are never mentioned

directly, but their states change in the background, as a side effect of VM com-

mands.

f1 f2 f3 f1 f2

static static

(one set of virtual
memory segments
for each instance
of a running
function)

VM files
(f = VM function)

Foo.vm Bar.vm

VM
translator

VM
translator

argument argument argument

local

this

that

pointer

local

this

that

pointer

local

this

that

pointer

argument

local

this

that

pointer

argument

local

this

that

pointer

temp

constant

Hack machine language code

Figure 7.7 The virtual memory segments are maintained by the VM implementation.

132 Chapter 7

The Stack Consider the commands sequence push argument 2 and pop local 1,

mentioned before. The working memory of such VM operations is the stack. The

data value did not simply jump from one segment to another—it went through the

stack. Yet in spite of its central role in the VM architecture, the stack proper is never

mentioned in the VM language.

The Heap Another memory element that exists in the VM’s background is the

heap. The heap is the name of the RAM area dedicated for storing objects and arrays

data. These objects and arrays can be manipulated by VM commands, as we will see

shortly.

7.2.4 Program Flow and Function Calling Commands

The VM features six additional commands that are discussed at length in the next

chapter. For completeness, these commands are listed here.

Program Flow Commands

label symbol // Label declaration

goto symbol // Unconditional branching

if-goto symbol // Conditional branching

Function Calling Commands

function functionName nLocals // Function declaration, specifying the

// number of the function’s local variables

call functionName nArgs // Function invocation, specifying the

// number of the function’s arguments

return // Transfer control back to the calling function

(In this list of commands, functionName is a symbol and nLocals and nArgs are non-

negative integers.)

7.2.5 Program Elements in the Jack-VM-Hack Platform

We end the first part of the VM specification with a top-down view of all the pro-

gram elements that emerge from the full compilation of a typical high-level program.

At the top of figure 7.8 we see a Jack program, consisting of two classes (Jack, a

133 Virtual Machine I: Stack Arithmetic

simple Java-like language, is described in chapter 9). Each Jack class consists of one

or more methods. When the Jack compiler is applied to a directory that includes n

class files, it produces n VM files (in the same directory). Each Jack method xxx

within a class Yyy is translated into one VM function called Yyy.xxx within the

corresponding VM file.

Next, the figure shows how the VM translator can be applied to the directory in

which the VM files reside, generating a single assembly program. This assembly

program does two main things. First, it emulates the virtual memory segments of

each VM function and file, as well as the implicit stack. Second, it effects the VM

commands on the target platform. This is done by manipulating the emulated

VM data structures using machine language instructions—those translated from the

VM commands. If all works well, that is, if the compiler and the VM translator and

the assembler are implemented correctly, the target platform will end up effecting the

behavior mandated by the original Jack program.

m1 m2 m3 m1 m2

prog directory

Foo.jack

prog directory

Foo.vm
Foo.m1 Foo.m2 Foo.m3

prog.asm

prog.hack

Hack binary code

Hack assembly code

Bar.jack Jack class files

(m = Jack method)

(Chapters 9–10)

Bar.vm
Bar.m1 Bar.m2 VM files

(Chapters 7–8)

Assembly file

Binary file

(Chapter 6)assembler

VM
translator

compiler

Figure 7.8 Program elements in the Jack-VM-Hack platform.

134 Chapter 7

7.2.6 VM Programming Examples

We end this section by illustrating how the VM abstraction can be used to express

typical programming tasks found in high-level programs. We give three examples: (i)

a typical arithmetic task, (ii) typical array handling, and (iii) typical object handling.

These examples are irrelevant to the VM implementation, and in fact the entire sec-

tion 7.2.6 can be skipped without losing the thread of the chapter.

The main purpose of this section is to illustrate how the compiler developed in

chapters 10–11 will use the VM abstraction to translate high-level programs into VM

code. Indeed, VM programs are rarely written by human programmers, but rather by

compilers. Therefore, it is instructive to begin each example with a high-level code

fragment, then show its equivalent representation using VM code. We use a C-style

syntax for all the high-level examples.

A Typical Arithmetic Task Consider the multiplication algorithm shown at the top

of figure 7.9. How should we (or more likely, the compiler) express this algorithm in

the VM language? First, high-level structures like for and while must be rewritten

using the VM’s simple ‘‘goto logic.’’ In a similar fashion, high-level arithmetic and

Boolean operations must be expressed using stack-oriented commands. The resulting

code is shown in figure 7.9. (The exact semantics of the VM commands function,

label, goto, if-goto, and return are described in chapter 8, but their intuitive

meaning is self-explanatory.)

Let us focus on the virtual segments depicted at the bottom of figure 7.9. We see

that when a VM function starts running, it assumes that (i) the stack is empty, (ii) the

argument values on which it is supposed to operate are located in the argument

segment, and (iii) the local variables that it is supposed to use are initialized to 0 and

located in the local segment.

Let us now focus on the VM representation of the algorithm. Recall that VM

commands cannot use symbolic argument and variable names—they are limited to

making hsegment indexi references only. However, the translation from the former

to the latter is straightforward. All we have to do is map x, y, sum and j on argu-

ment 0, argument 1, local 0 and local 1, respectively, and replace all their sym-

bolic occurrences in the pseudo code with corresponding hsegment indexi references.

To sum up, when a VM function starts running, it assumes that it is surrounded

by a private world, all of its own, consisting of initialized argument and local seg-

ments and an empty stack, waiting to be manipulated by its commands. The agent

responsible for staging this virtual worldview for every VM function just before it

starts running is the VM implementation, as we will see in the next chapter.

135 Virtual Machine I: Stack Arithmetic

High-level code (C style)

int mult(int x, int y) {

int sum;

sum = 0;

for(int j = y; j != 0; j--)

sum += x; // Repetitive addition

return sum;

}

First approximation Pseudo VM code Final VM code

function mult

args x, y

vars sum, j

sum = 0

j = y

loop:

if j = 0 goto end

sum = sum + x

j = j - 1

goto loop

end:

return sum

function mult(x,y)

push 0

pop sum

push y

pop j

label loop

push 0

push j

eq

if-goto end

push sum

push x

add

pop sum

push j

push l

sub

pop j

goto loop

label end

push sum

return

function mult 2 // 2 local variables

push constant 0

pop local 0 // sum¼0

push argument 1

pop local 1 // j¼y

label loop

push constant 0

push local 1

Eq

if-goto end // if j¼0 goto end

push local 0

push argument 0

Add

pop local 0 // sum¼sumþx

push local 1

push constant 1

Sub

pop local 1 // j¼j�1

goto loop

label end

push local 0

return // return sum

Figure 7.9 VM programming example.

136 Chapter 7

Array Handling An array is an indexed collection of objects. Suppose that a high-

level program has created an array of ten integers called bar and filled it with some

ten numbers. Let us assume that the array’s base has been mapped (behind the scene)

on RAM address 4315. Suppose now that the high-level program wants to execute

the command bar[2]=19. How can we implement this operation at the VM level?

In the C language, such an operation can be also specified as *(bar+2)=19,

meaning ‘‘set the RAM location whose address is (bar+2) to 19.’’ As shown in figure

7.10, this operation lends itself perfectly well to the VM language.

It remains to be seen, of course, how a high-level command like bar[2]=19 is

translated in the first place into the VM code shown in figure 7.10. This transforma-

tion is described in section 11.1.1, when we discuss the code generation features of

the compiler.

Object Handling High-level programmers view objects as entities that encapsulate

data (organized as fields, or properties) and relevant code (organized as methods). Yet

physically speaking, the data of each object instance is serialized on the RAM as a

list of numbers representing the object’s field values. Thus the low-level handling of

objects is quite similar to that of arrays.

For example, consider an animation program designed to juggle some balls on

the screen. Suppose that each Ball object is characterized by the integer fields x,

y, radius, and color. Let us assume that the program has created one such Ball

object and called it b. What will be the internal representation of this object in the

computer?

Like all other object instances, it will be stored in the RAM. In particular, when-

ever a program creates a new object, the compiler computes the object’s size in terms

of words and the operating system finds and allocates enough RAM space to store

x
y

Just after mult(7,3) is entered:

SP
SP 217

3
0

argument

1
...

sum
j

0
0

0

local

1

Stack Stack

...

(The symbols x, y, sum, and j are not part of the VM program and are shown here only for ease of
reference.)

Just after mult(7,3) returns:

Figure 7.9 (continued)

137 Virtual Machine I: Stack Arithmetic

7
53

1212

0
1

8
7

53
121

4315
4316
4317

8

4324

...

...

...
19

199

3

4318

...

398 4315

0
...

bar

High-level program view RAM view

bar
array

bar
array

following
compilation

(Actual RAM locations of program variables are
run-time dependent, and thus the addresses shown
here are arbitrary examples.)

VM code

/* Assume that the bar array is the first local variable declared in the

high-level program. The following VM code implements the operation

bar[2]=19, i.e., *(bar+2)=19. */

push local 0 // Get bar’s base address

push constant 2

add

pop pointer 1 // Set that’s base to (bar+2)

push constant 19

pop that 0 // *(bar+2)=19

...

0
1

43150
1 ...

0
1 ...

43170
1

43150
1 ...

190
1 ...

local pointer that local pointer that

Virtual memory segments
just before the bar[2]=19 operation:

Virtual memory segments
just after the bar[2]=19 operation:

(that 0
is now
aligned with
RAM[4317])

Figure 7.10 VM-based array manipulation using the pointer and that segments.

138 Chapter 7

it (the exact details of this operation are discussed in chapter 11). For now, let us

assume that our b object has been allocated RAM addresses 3012 to 3015, as shown

in figure 7.11.

Suppose now that a certain method in the high-level program, say resize, takes

a Ball object and an integer r as arguments, and, among other things, sets the ball’s

radius to r. The VM representation of this logic is shown in figure 7.11.

When we set pointer 0 to the value of argument 0, we are effectively setting the

base of the virtual this segment to the object’s base address. From this point on,

VM commands can access any field in the object using the virtual memory segment

this and an index relative to the object’s base-address in memory.

But how did the compiler translate b.radius=17 into the VM code shown in fig-

ure 7.11? And how did the compiler know that the radius field of the object corre-

sponds to the third field in its actual representation? We return to these questions in

section 11.1.1, when we discuss the code generation features of the compiler.

7.3 Implementation

The virtual machine that was described up to this point is an abstract artifact. If we

want to use it for real, we must implement it on a real platform. Building such a

VM implementation consists of two conceptual tasks. First, we have to emulate the

VM world on the target platform. In particular, each data structure mentioned in

the VM specification, namely, the stack and the virtual memory segments, must be

represented in some way by the target platform. Second, each VM command must be

translated into a series of instructions that effect the command’s semantics on the

target platform.

This section describes how to implement the VM specification (section 7.2) on

the Hack platform. We start by defining a ‘‘standard mapping’’ from VM ele-

ments and operations to the Hack hardware and machine language. Next, we suggest

guidelines for designing the software that achieves this mapping. In what follows, we

will refer to this software using the terms VM implementation or VM translator

interchangeably.

7.3.1 Standard VM Mapping on the Hack Platform, Part I

If you reread the virtual machine specification given so far, you will realize that

it contains no assumption whatsoever about the architecture on which the VM can

139 Virtual Machine I: Stack Arithmetic

120
80
50radius:

x:
y:

3color:
120

80
50

3012
3013
3014

33015

412 3012
...

...

High-level program view RAM view
0

...
b

(Actual RAM locations of program variables
are run-time dependent, and thus the addresses
shown here are arbitrary examples.)

following
compilation

b
object

b
object

VM code

/* Assume that the b object and the r integer were passed to the function as

its first two arguments. The following code implements the operation

b.radius=r. */

push argument 0 // Get b’s base address

pop pointer 0 // Point the this segment to b

push argument 1 // Get r’s value

pop this 2 // Set b’s third field to r

...

00
1

Virtual memory segments just before
the operation b.radius=17:

3012
17

0
1

...
...

120
80
17

0
1
2

30120
1

3

3012
17

0
1

argument pointer this

...
3

...

argument pointer this

(this 0
is now
aligned with
RAM[3012])

Virtual memory segments just after
the operation b.radius=17:

Figure 7.11 VM-based object manipulation using the pointer and this segments.

140 Chapter 7

be implemented. When it comes to virtual machines, this platform independence is

the whole point: You don’t want to commit to any one hardware platform, since you

want your machine to potentially run on all of them, including those that were not

built yet.

It follows that the VM designer can principally let programmers implement the

VM on target platforms in any way they see fit. However, it is usually recommended

that some guidelines be provided as to how the VM should map on the target plat-

form, rather than leaving these decisions completely to the implementer’s discretion.

These guidelines, called standard mapping, are provided for two reasons. First, they

entail a public contract that regulates how VM-based programs can interact with

programs produced by compilers that don’t use this VM (e.g., compilers that pro-

duce binary code directly). Second, we wish to allow the developers of the VM

implementation to run standardized tests, namely, tests that conform to the standard

mapping. This way, the tests and the software can be written by different people,

which is always recommended. With that in mind, the remainder of this section

specifies the standard mapping of the VM on a familiar hardware platform: the Hack

computer.

VM to Hack Translation Recall that a VM program is a collection of one or more

.vm files, each containing one or more VM functions, each being a sequence of VM

commands. The VM translator takes a collection of .vm files as input and produces a

single Hack assembly language .asm file as output (see figure 7.7). Each VM com-

mand is translated by the VM translator into Hack assembly code. The order of the

functions within the .vm files does not matter.

RAM Usage The data memory of the Hack computer consists of 32K 16-bit words.

The first 16K serve as general-purpose RAM. The next 16K contain memory maps

of I/O devices. The VM implementation should use this space as follows:

RAM addresses Usage

0–15 Sixteen virtual registers, usage described below

16–255 Static variables (of all the VM functions in the VM program)

256–2047 Stack

2048–16483 Heap (used to store objects and arrays)

16384–24575 Memory mapped I/O

Recall that according to the Hack Machine Language Specification, RAM addresses

0 to 15 can be referred to by any assembly program using the symbols R0 to R15,

141 Virtual Machine I: Stack Arithmetic

respectively. In addition, the specification states that assembly programs can refer

to RAM addresses 0 to 4 (i.e., R0 to R4) using the symbols SP, LCL, ARG, THIS, and

THAT. This convention was introduced into the assembly language with foresight, in

order to promote readable VM implementations. The expected use of these registers

in the VM context is described as follows:

Register Name Usage

RAM[0] SP Stack pointer: points to the next topmost location in

the stack;

RAM[1] LCL Points to the base of the current VM function’s

local segment;

RAM[2] ARG Points to the base of the current VM function’s

argument segment;

RAM[3] THIS Points to the base of the current this segment

(within the heap);

RAM[4] THAT Points to the base of the current that segment

(within the heap);

RAM[5–12] Holds the contents of the temp segment;

RAM[13–15] Can be used by the VM implementation as general-

purpose registers.

Memory Segments Mapping

local, argument, this, that: Each one of these segments is mapped directly

on the RAM, and its location is maintained by keeping its physical base address in a

dedicated register (LCL, ARG, THIS, and THAT, respectively). Thus any access to the

ith entry of any one of these segments should be translated to assembly code that

accesses address (baseþ i) in the RAM, where base is the current value stored in the

register dedicated to the respective segment.

pointer, temp: These segments are each mapped directly onto a fixed area in the

RAM. The pointer segment is mapped on RAM locations 3–4 (also called THIS

and THAT) and the temp segment on locations 5–12 (also called R5, R6, . . . , R12).

Thus access to pointer i should be translated to assembly code that accesses RAM

location 3þ i, and access to temp i should be translated to assembly code that

accesses RAM location 5þ i.

constant: This segment is truly virtual, as it does not occupy any physical space

on the target architecture. Instead, the VM implementation handles any VM access

to hconstant ii by simply supplying the constant i.

142 Chapter 7

static: According to the Hack machine language specification, when a new sym-

bol is encountered for the first time in an assembly program, the assembler allocates

a new RAM address to it, starting at address 16. This convention can be exploited

to represent each static variable number j in a VM file f as the assembly language

symbol f.j. For example, suppose that the file Xxx.vm contains the command push

static 3. This command can be translated to the Hack assembly commands

@Xxx.3 and D=M, followed by additional assembly code that pushes D’s value to the

stack. This implementation of the static segment is somewhat tricky, but it works.

Assembly Language Symbols We recap all the assembly language symbols used by

VM implementations that conform to the standard mapping.

Symbol Usage

SP, LCL, ARG,

THIS, THAT

These predefined symbols point, respectively, to the

stack top and to the base addresses of the virtual

segments local, argument, this, and that.

R13-R15 These predefined symbols can be used for any

purpose.

Xxx.j symbols Each static variable j in file Xxx.vm is translated into

the assembly symbol Xxx.j. In the subsequent

assembly process, these symbolic variables will be

allocated RAM space by the Hack assembler.

Flow of control

symbols

The implementation of the VM commands

function, call, and label involves generating

special label symbols, to be discussed in chapter 8.

7.3.2 Design Suggestion for the VM Implementation

The VM translator should accept a single command line parameter, as follows:

prompt> VMtranslator source

Where source is either a file name of the form Xxx.vm (the extension is mandatory)

or a directory name containing one or more .vm files (in which case there is no ex-

tension). The result of the translation is always a single assembly language file named

Xxx.asm, created in the same directory as the input Xxx. The translated code must

conform to the standard VM mapping on the Hack platform.

143 Virtual Machine I: Stack Arithmetic

7.3.3 Program Structure

We propose implementing the VM translator using a main program and two mod-

ules: parser and code writer.

The Parser Module

Parser: Handles the parsing of a single .vm file, and encapsulates access to the input

code. It reads VM commands, parses them, and provides convenient access to their

components. In addition, it removes all white space and comments.

Routine Arguments Returns Function

Constructor Input file/

stream

— Opens the input file/stream

and gets ready to parse it.

hasMoreCommands — Boolean Are there more commands

in the input?

advance — — Reads the next command

from the input and makes it

the current command.

Should be called only if

hasMoreCommands() is

true. Initially there is no

current command.

commandType — C_ARITHMETIC,

C_PUSH, C_POP,

C_LABEL,

C_GOTO, C_IF,

C_FUNCTION,

C_RETURN,

C_CALL

Returns the type of the

current VM command.

C_ARITHMETIC is returned

for all the arithmetic

commands.

arg1 — string Returns the first argument

of the current command. In

the case of C_ARITHMETIC,

the command itself (add,

sub, etc.) is returned.

Should not be called if the

current command is

C_RETURN.

144 Chapter 7

Routine Arguments Returns Function

arg2 — int Returns the second

argument of the current

command. Should be called

only if the current

command is C_PUSH,

C_POP, C_FUNCTION, or

C_CALL.

The CodeWriter Module

CodeWriter: Translates VM commands into Hack assembly code.

Routine Arguments Returns Function

Constructor Output file/stream — Opens the output file/

stream and gets ready to

write into it.

setFileName fileName (string) — Informs the code writer

that the translation of a

new VM file is started.

writeArithmetic command (string) — Writes the assembly code

that is the translation of

the given arithmetic

command.

WritePushPop command (C_PUSH

or C_POP),

segment (string),

index (int)

— Writes the assembly code

that is the translation of

the given command,

where command is either

C_PUSH or C_POP.

Close — — Closes the output file.

Comment: More routines will be added to this module in chapter 8.

Main Program The main program should construct a Parser to parse the VM

input file and a CodeWriter to generate code into the corresponding output file. It

145 Virtual Machine I: Stack Arithmetic

should then march through the VM commands in the input file and generate assem-

bly code for each one of them.

If the program’s argument is a directory name rather than a file name, the main

program should process all the .vm files in this directory. In doing so, it should use a

separate Parser for handling each input file and a single CodeWriter for handling

the output.

7.4 Perspective

In this chapter we began the process of developing a compiler for a high-level lan-

guage. Following modern software engineering practices, we have chosen to base the

compiler on a two-tier compilation model. In the frontend tier, covered in chapters 10

and 11, the high-level code is translated into an intermediate code, running on a vir-

tual machine. In the backend tier, covered in this and in the next chapter, the inter-

mediate code is translated into the machine language of a target hardware platform

(see figures 7.1 and 7.9).

The idea of formulating the intermediate code as the explicit language of a virtual

machine goes back to the late 1970s, when it was used by several popular Pascal

compilers. These compilers generated an intermediate ‘‘p-code’’ that could execute

on any computer that implemented it. Following the wide spread use of the World

Wide Web in the mid-1990s, cross-platform compatibility became a universally vex-

ing issue. In order to address the problem, the Sun Microsystems company sought to

develop a new programming language that could potentially run on any computer

and digital device connected to the Internet. The language that emerged from this

initiative—Java—is also founded on an intermediate code execution model called

the Java Virtual Machine, on JVM.

The JVM is a specification that describes an intermediate language called byte-

code—the target language of Java compilers. Files written in bytecode are then used

for dynamic code distribution of Java programs over the Internet, most notably as

applets embedded in web pages. Of course in order to execute these programs, the

client computers must be equipped with suitable JVM implementations. These pro-

grams, also called Java Run-time Environments (JREs), are widely available for nu-

merous processor/OS combinations, including game consoles and cell phones.

In the early 2000s, Microsoft entered the fray with its .NET infrastructure. The

centerpiece of .NET is a virtual machine model called Common Language Runtime

(CLR). According to the Microsoft vision, many programming languages (including

146 Chapter 7

Cþþ, C#, Visual Basic, and J#—a Java variant) could be compiled into intermedi-

ate code running on the CLR. This enables code written in different languages to

interoperate and share the software libraries of a common run-time environment.

We note in closing that a crucial ingredient that must be added to the virtual

machine model before its full potential of interoperability is unleashed is a com-

mon software library. Indeed the Java virtual machine comes with the standard

Java libraries, and the Microsoft virtual machine comes with the Common Language

Runtime. These software libraries can be viewed as small operating systems, provid-

ing the languages that run on top of the VM with unified services like memory man-

agement, GUI utilities, string functions, math functions, and so on. One such library

will be described and built in chapter 12.

7.5 Project

This section describes how to build the VM translator presented in the chapter. In

the next chapter we will extend this basic translator with additional functionality,

leading to a full-scale VM implementation. Before you get started, two comments are

in order. First, section 7.2.6 is irrelevant to this project. Second, since the VM trans-

lator is designed to generate Hack assembly code, it is recommended to refresh your

memory about the Hack assembly language rules (section 4.2).

Objective Build the first part of the VM translator (the second part is implemented

in Project 8), focusing on the implementation of the stack arithmetic and memory

access commands of the VM language.

Resources You will need two tools: the programming language in which you will

implement your VM translator, and the CPU emulator supplied with the book. This

emulator will allow you to execute the machine code generated by your VM transla-

tor—an indirect way to test the correctness of the latter. Another tool that may come

in handy in this project is the visual VM emulator supplied with the book. This pro-

gram allows experimenting with a working VM implementation before you set out to

build one yourself. For more information about this tool, refer to the VM emulator

tutorial.

Contract Write a VM-to-Hack translator, conforming to the VM Specification,

Part I (section 7.2) and to the Standard VM Mapping on the Hack Platform, Part I

147 Virtual Machine I: Stack Arithmetic

(section 7.3.1). Use it to translate the test VM programs supplied here, yielding cor-

responding programs written in the Hack assembly language. When executed on the

supplied CPU emulator, the assembly programs generated by your translator should

deliver the results mandated by the supplied test scripts and compare files.

Proposed Implementation Stages

We recommend building the translator in two stages. This will allow you to unit-test

your implementation incrementally, using the test programs supplied here.

Stage I: Stack Arithmetic Commands The first version of your VM translator

should implement the nine stack arithmetic and logical commands of the VM lan-

guage as well as the push constant x command (which, among other things, will

help in testing the nine former commands). Note that the latter is the generic push

command for the special case where the first argument is constant and the second

argument is some decimal constant.

Stage II: Memory Access Commands The next version of your translator should

include a full implementation of the VM language’s push and pop commands, han-

dling all eight memory segments. We suggest breaking this stage into the following

substages:

0. You have already handled the constant segment.

1. Next, handle the segments local, argument, this, and that.

2. Next, handle the pointer and temp segments, in particular allowing modifica-

tion of the bases of the this and that segments.

3. Finally, handle the static segment.

Test Programs

The five VM programs listed here are designed to unit-test the proposed implemen-

tation stages just described.

Stage I: Stack Arithmetic

m SimpleAdd: Pushes and adds two constants.

m StackTest: Executes a sequence of arithmetic and logical operations on the

stack.

148 Chapter 7

Stage II: Memory Access

m BasicTest: Executes pop and push operations using the virtual memory

segments.

m PointerTest: Executes pop and push operations using the pointer, this,

and that segments.

m StaticTest: Executes pop and push operations using the static segment.

For each program Xxx we supply four files, beginning with the program’s

code in Xxx.vm. The XxxVME.tst script allows running the program on the supplied

VM emulator, so that you can gain familiarity with the program’s intended opera-

tion. After translating the program using your VM translator, the supplied Xxx.tst

and Xxx.cmp scripts allow testing the translated assembly code on the CPU

emulator.

Tips

Initialization In order for any translated VM program to start running, it must in-

clude a preamble startup code that forces the VM implementation to start executing

it on the host platform. In addition, in order for any VM code to operate properly,

the VM implementation must anchor the base addresses of the virtual segments in

selected RAM locations. Both issues—startup code and segments initializations—are

implemented in the next project. The difficulty of course is that we need these initi-

alizations in place in order to execute the test programs given in this project. The

good news is that you should not worry about these issues at all, since the supplied

test scripts carry out all the necessary initializations in a manual fashion (for the

purpose of this project only).

Testing/Debugging For each one of the five test programs, follow these steps:

1. Run the Xxx.vm program on the supplied VM emulator, using the XxxVME.tst

test script, to get acquainted with the intended program’s behavior.

2. Use your partial translator to translate the .vm file. The result should be a

text file containing a translated .asm program, written in the Hack assembly

language.

3. Inspect the translated .asm program. If there are visible syntax (or any other)

errors, debug and fix your translator.

149 Virtual Machine I: Stack Arithmetic

4. Use the supplied .tst and .cmp files to run your translated .asm program on

the CPU emulator. If there are run-time errors, debug and fix your translator.

The supplied test programs were carefully planned to test the specific features of each

stage in your VM implementation. Therefore, it’s important to implement your

translator in the proposed order and to test it using the appropriate test programs

at each stage. Implementing a later stage before an early one may cause the test

programs to fail.

Figure 7.12 The VM emulator supplied with the book.

150 Chapter 7

Tools

The VM Emulator The book’s software suite includes a Java-based VM imple-

mentation. This VM emulator allows executing VM programs directly, without

having to translate them first into machine language. This practice enables experi-

mentation with the VM environment before you set out to implement one yourself.

Figure 7.12 is a typical screen shot of the VM emulator in action.

151 Virtual Machine I: Stack Arithmetic

